Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Nat Commun ; 14(1): 6493, 2023 10 14.
Article En | MEDLINE | ID: mdl-37838725

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.


Polycystic Kidney Diseases , Humans , Mice , Animals , Autophagy/genetics , Homeostasis , Fibrosis , Nerve Growth Factors/genetics
2.
J Med Virol ; 95(8): e28995, 2023 08.
Article En | MEDLINE | ID: mdl-37522259

BK polyomavirus (BKV) is a small non-enveloped DNA virus. BKV infection or reactivation may cause BKV-associated nephropathy and hemorrhagic cystitis in immunosuppressed transplant recipients. No effective antivirals or prevention strategies are available against BKV infections. The current BKV reverse system employs the transfection of purified full-length linear viral genomes released by enzyme digestion from BKV genomic plasmids. The method is laborious and often results in variable DNA yield and quality, which can affect the efficiency of transfection and subsequent formation of circular viral genomes in cells. In this study, we report the generation of circular viral genomes by Cre-mediated DNA recombination in cells directly transfected with BKV precursor genomic plasmids. The novel system supported efficient viral expression and replication, and produced a higher level of infectious virions compared with the transfection with linear BKV genomes. Furthermore, we successfully constructed recombinant BKV capable of reporter gene expression. In conclusion, the novel BKV reverse genetic system allows for simpler manipulation of BKV genome with better virus yield, providing a tool for the study of BKV life cycle and antiviral screening.


BK Virus , Kidney Transplantation , Polyomavirus Infections , Tumor Virus Infections , Humans , BK Virus/genetics , Reverse Genetics , DNA
3.
J Hepatocell Carcinoma ; 10: 599-609, 2023.
Article En | MEDLINE | ID: mdl-37069959

Objective: Pre-S1 antigen (pre-S1) is a component of hepatitis B virus large surface antigen (L-HBsAg). This study aimed to investigate the association between clinical pre-S1 antigen (pre-S1) status and adverse prognostic events in chronic hepatitis B (CHB) patients. Methods: This study retrospectively enrolled 840 CHB patients with comprehensive clinical data, including 144 patients with multiple follow-up of pre-S1 status. All patients were tested for serum pre-S1 and divided into pre-S1 positive and negative groups. Single factor and logistic multiple regression analyses were performed to explore the association between pre-S1 and other HBV biomarkers with the risk of hepatocellular carcinoma (HCC) in CHB patients. The pre-S1 region sequences of HBV DNA were obtained from one pre-S1 positive and two pre-S1 negative treatment-naïve patients using polymerase chain reaction (PCR) amplification followed by Sanger sequencing. Results: The quantitative HBsAg level was significantly higher in the pre-S1 positive group than that in the pre-S1 negative group (Z=-15.983, P<0.001). The positive rate of pre-S1 increased significantly with the increase in HBsAg level (χ 2=317.963, P<0.001) and HBV DNA load (χ 2=15.745, P<0.001). The pre-S1 negative group had a higher HCC risk than the pre-S1 positive group (Z=-2.00, P=0.045, OR=1.61). Moreover, patients in the sustained pre-S1 negative group had a higher HCC risk (Z=-2.56, P=0.011, OR=7.12) than those in the sustained pre-S1 positive group. The sequencing results revealed mutations in the pre-S1 region from samples of pre-S1 negative patients, including frameshift and deletion mutations. Conclusion: Pre-S1 is a biomarker that indicates the presence and replication of HBV. Pre-S1 sustained negativity attributed to pre-S1 mutations in CHB patients may be associated with a higher risk of HCC, which has clinical significance and warrant further investigations.

4.
bioRxiv ; 2023 Jan 12.
Article En | MEDLINE | ID: mdl-36711449

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.

5.
Nat Microbiol ; 7(7): 1063-1074, 2022 07.
Article En | MEDLINE | ID: mdl-35773398

Frequent outbreaks of coronaviruses underscore the need for antivirals and vaccines that can counter a broad range of coronavirus types. We isolated a human antibody named 76E1 from a COVID-19 convalescent patient, and report that it has broad-range neutralizing activity against multiple α- and ß-coronaviruses, including the SARS-CoV-2 variants. 76E1 also binds its epitope in peptides from γ- and δ-coronaviruses. 76E1 cross-protects against SARS-CoV-2 and HCoV-OC43 infection in both prophylactic and therapeutic murine animal models. Structural and functional studies revealed that 76E1 targets a unique epitope within the spike protein that comprises the highly conserved S2' site and the fusion peptide. The epitope that 76E1 binds is partially buried in the structure of the SARS-CoV-2 spike trimer in the prefusion state, but is exposed when the spike protein binds to ACE2. This observation suggests that 76E1 binds to the epitope at an intermediate state of the spike trimer during the transition from the prefusion to the postfusion state, thereby blocking membrane fusion and viral entry. We hope that the identification of this crucial epitope, which can be recognized by 76E1, will guide epitope-based design of next-generation pan-coronavirus vaccines and antivirals.


COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , Epitopes , Humans , Immunoglobulins , Mice , Spike Glycoprotein, Coronavirus/metabolism
6.
EBioMedicine ; 76: 103861, 2022 Feb.
Article En | MEDLINE | ID: mdl-35124429

BACKGROUND: Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS: Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS: Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION: HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING: The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).


Gene Regulatory Networks/genetics , Genome, Human , Hyaluronic Acid/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Antagomirs/metabolism , Argonaute Proteins/genetics , Base Sequence , COVID-19/pathology , COVID-19/virology , Cell Line , Disease Progression , Enhancer Elements, Genetic/genetics , Humans , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/blood , MicroRNAs/genetics , RNA, Viral/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Up-Regulation
7.
Nat Biomed Eng ; 6(3): 276-285, 2022 03.
Article En | MEDLINE | ID: mdl-35132229

The detection of samples at ultralow concentrations (one to ten copies in 100 µl) in biofluids is hampered by the orders-of-magnitude higher amounts of 'background' biomolecules. Here we report a molecular system, immobilized on a liquid-gated graphene field-effect transistor and consisting of an aptamer probe bound to a flexible single-stranded DNA cantilever linked to a self-assembled stiff tetrahedral double-stranded DNA structure, for the rapid and ultrasensitive electromechanical detection (down to one to two copies in 100 µl) of unamplified nucleic acids in biofluids, and also of ions, small molecules and proteins, as we show for Hg2+, adenosine 5'-triphosphate and thrombin. We implemented an electromechanical biosensor for the detection of SARS-CoV-2 into an integrated and portable prototype device, and show that it detected SARS-CoV-2 RNA in less than four minutes in all nasopharyngeal samples from 33 patients with COVID-19 (with cycle threshold values of 24.9-41.3) and in none of the 54 COVID-19-negative controls, without the need for RNA extraction or nucleic acid amplification.


COVID-19 , Graphite , COVID-19/diagnosis , Humans , Ions , RNA, Viral/genetics , SARS-CoV-2/genetics
8.
Emerg Microbes Infect ; 11(1): 351-367, 2022 Dec.
Article En | MEDLINE | ID: mdl-34964428

The emergence of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of currently approved vaccines and authorized therapeutic monoclonal antibodies (MAbs). It is hence important to continue searching for SARS-CoV-2 broadly neutralizing MAbs and defining their epitopes. Here, we isolate 9 neutralizing mouse MAbs raised against the spike protein of a SARS-CoV-2 prototype strain and evaluate their neutralizing potency towards a panel of variants, including B.1.1.7, B.1.351, B.1.617.1, and B.1.617.2. By using a combination of biochemical, virological, and cryo-EM structural analyses, we identify three types of cross-variant neutralizing MAbs, represented by S5D2, S5G2, and S3H3, respectively, and further define their epitopes. S5D2 binds the top lateral edge of the receptor-binding motif within the receptor-binding domain (RBD) with a binding footprint centred around the loop477-489, and efficiently neutralizes all variant pseudoviruses, but the potency against B.1.617.2 was observed to decrease significantly. S5G2 targets the highly conserved RBD core region and exhibits comparable neutralization towards the variant panel. S3H3 binds a previously unreported epitope located within the evolutionarily stable SD1 region and is able to near equally neutralize all of the variants tested. Our work thus defines three distinct cross-variant neutralizing sites on the SARS-CoV-2 spike protein, providing guidance for design and development of broadly effective vaccines and MAb-based therapies.


COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitope Mapping , Female , Humans , Mice , Mice, Inbred BALB C , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article En | MEDLINE | ID: mdl-34728625

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
10.
Nano Lett ; 21(22): 9450-9457, 2021 11 24.
Article En | MEDLINE | ID: mdl-34734737

Direct SARS-CoV-2 nucleic acid testing with fast speed and high frequency is crucial for controlling the COVID-19 pandemic. Here, direct testing of SARS-CoV-2 nucleic acid is realized by field-effect transistors (FETs) with an electro-enrichable liquid gate (LG) anchored by tetrahedral DNA nanostructures (TDNs). The applied gate bias electrostatically preconcentrates nucleic acids, while the liquid gate with TDNs provides efficient analyte recognition and signal transduction. The average diagnosis time is ∼80 s, and the limit of detection approaches 1-2 copies in 100 µL of clinical samples without nucleic acid extraction and amplification. As such, TDN-LG FETs solve the dilemma of COVID-19 testing on mass scale that diagnosis accuracy and speed undergo trade-off. In addition, TDN-LG FETs achieve unamplified 10-in-1 pooled nucleic acid testing for the first time, and the results are consistent with PCR. Thus, this technology promises on-site and wide population COVID-19 screening and ensures safe world-reopening.


COVID-19 , Nanostructures , Nucleic Acids , COVID-19 Testing , DNA/genetics , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
11.
Vaccine ; 39(48): 7001-7011, 2021 11 26.
Article En | MEDLINE | ID: mdl-34750014

COVID-19 pandemic has severely impacted the public health and social economy worldwide. A safe, effective, and affordable vaccine against SARS-CoV-2 infections/diseases is urgently needed. We have been developing a recombinant vaccine based on a prefusion-stabilized spike trimer of SARS-CoV-2 and formulated with aluminium hydroxide and CpG 7909. The spike protein was expressed in Chinese hamster ovary (CHO) cells, purified, and prepared as a stable formulation with the dual adjuvant. Immunogenicity studies showed that candidate vaccines elicited robust neutralizing antibody responses and substantial CD4+ T cell responses in both mice and non-human primates. And vaccine-induced neutralizing antibodies persisted at high level for at least 6 months. Challenge studies demonstrated that candidate vaccine reduced the viral loads and inflammation in the lungs of SARS-CoV-2 infected golden Syrian hamsters significantly. In addition, the vaccine-induced antibodies showed cross-neutralization activity against B.1.1.7 and B.1.351 variants. These data suggest candidate vaccine is efficacious in preventing SARS-CoV-2 infections and associated pneumonia, thereby justifying ongoing phase I/II clinical studies in China (NCT04982068 and NCT04990544).


COVID-19 Vaccines , COVID-19 , Alum Compounds , Aluminum Hydroxide , Animals , Antibodies, Neutralizing , Antibodies, Viral , CHO Cells , Cricetinae , Cricetulus , Humans , Mice , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
12.
J Med Chem ; 64(20): 15037-15052, 2021 10 28.
Article En | MEDLINE | ID: mdl-34657423

YycFG, one of the two-component systems involved in the regulation of biofilm formation, has attracted increasing interest as a potential target of antibacterial and antibiofilm agents. YycG inhibitors for Staphylococcus aureus and Staphylococcus epidermidis have been developed, but Enterococcus faecalis remains underexplored. Herein, we selected and identified novel candidate molecules against E. faecalis targeting histidine kinase YycG using high-throughput virtual screening; six molecules (compound-16, -30, -42, -46, -59, and -62) with low cytotoxicity toward mammalian cells were verified as potential YycG inhibitors through an autophosphorylation test and binding kinetics. Compound-16 inhibited planktonic cells of E. faecalis, including the vancomycin- or linezolid-resistant strains. In contrast, compound-62 did not affect planktonic growth but significantly inhibited biofilm formation in static and dynamic conditions. Compound-62 combined with ampicillin could synergistically eradicate the biofilm-embedded viable bacteria. The study demonstrates that YycG inhibitors may be valuable approaches for the development of novel antimicrobial agents for difficult-to-treat bacterial infections.


Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Enterococcus faecalis/drug effects , Animals , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Enterococcus faecalis/growth & development , Erythrocytes/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Vero Cells
13.
Genome Med ; 13(1): 164, 2021 10 14.
Article En | MEDLINE | ID: mdl-34649620

BACKGROUND: The receptor-binding domain (RBD) variants of SARS-CoV-2 could impair antibody-mediated neutralization of the virus by host immunity; thus, prospective surveillance of antibody escape mutants and understanding the evolution of RBD are urgently needed. METHODS: Using the single B cell cloning technology, we isolated and characterized 93 RBD-specific antibodies from the memory B cells of four COVID-19 convalescent individuals in the early stage of the pandemic. Then, global RBD alanine scanning with a panel of 19 selected neutralizing antibodies (NAbs), including several broadly reactive NAbs, was performed. Furthermore, we assessed the impact of single natural mutation or co-mutations of concern at key positions of RBD on the neutralization escape and ACE2 binding function by recombinant proteins and pseudoviruses. RESULTS: Thirty-three amino acid positions within four independent antigenic sites (1 to 4) of RBD were identified as valuable indicators of antigenic changes in the RBD. The comprehensive escape mutation map not only confirms the widely circulating strains carrying important immune escape RBD mutations such as K417N, E484K, and L452R, but also facilitates the discovery of new immune escape-enabling mutations such as F486L, N450K, F490S, and R346S. Of note, these escape mutations could not affect the ACE2 binding affinity of RBD, among which L452R even enhanced binding. Furthermore, we showed that RBD co-mutations K417N, E484K, and N501Y present in B.1.351 appear more resistant to NAbs and human convalescent plasma from the early stage of the pandemic, possibly due to an additive effect. Conversely, double mutations E484Q and L452R present in B.1.617.1 variant show partial antibody evasion with no evidence for an additive effect. CONCLUSIONS: Our study provides a global view of the determinants for neutralizing antibody recognition, antigenic conservation, and RBD conformation. The in-depth escape maps may have value for prospective surveillance of SARS-CoV-2 immune escape variants. Special attention should be paid to the accumulation of co-mutations at distinct major antigenic sites. Finally, the new broadly reactive NAbs described here represent new potential opportunities for the prevention and treatment of COVID-19.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Immune Evasion , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adult , Aged , B-Lymphocytes/immunology , COVID-19/genetics , COVID-19/immunology , Female , Humans , Immunologic Memory , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
14.
J Am Chem Soc ; 143(41): 17004-17014, 2021 10 20.
Article En | MEDLINE | ID: mdl-34623792

Rapid screening of infected individuals from a large population is an effective means in epidemiology, especially to contain outbreaks such as COVID-19. The gold standard assays for COVID-19 diagnostics are mainly based on the reverse transcription polymerase chain reaction, which mismatches the requirements for wide-population screening due to time-consuming nucleic acid extraction and amplification procedures. Here, we report a direct nucleic acid assay by using a graphene field-effect transistor (g-FET) with Y-shaped DNA dual probes (Y-dual probes). The assay relies on Y-dual probes modified on g-FET simultaneously targeting ORF1ab and N genes of SARS-CoV-2 nucleic acid, enabling high a recognition ratio and a limit of detection (0.03 copy µL-1) 1-2 orders of magnitude lower than existing nucleic acid assays. The assay realizes the fastest nucleic acid testing (∼1 min) and achieves direct 5-in-1 pooled testing for the first time. Owing to its rapid, ultrasensitive, easily operated features as well as capability in pooled testing, it holds great promise as a comprehensive tool for population-wide screening of COVID-19 and other epidemics.


DNA Probes , DNA, Viral/analysis , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , Graphite/chemistry , Humans , Limit of Detection
15.
Cell Discov ; 7(1): 71, 2021 Aug 18.
Article En | MEDLINE | ID: mdl-34408130

Massive production of efficacious SARS-CoV-2 vaccines is essential for controlling the ongoing COVID-19 pandemic. We report here the preclinical development of yeast-produced receptor-binding domain (RBD)-based recombinant protein SARS-CoV-2 vaccines. We found that monomeric RBD of SARS-CoV-2 could be efficiently produced as a secreted protein from transformed Pichia pastoris (P. pastoris) yeast. Yeast-derived RBD-monomer possessed functional conformation and was able to elicit protective level of neutralizing antibodies in mice. We further designed and expressed a genetically linked dimeric RBD protein in yeast. The engineered dimeric RBD was more potent than the monomeric RBD in inducing long-lasting neutralizing antibodies. Mice immunized with either monomeric RBD or dimeric RBD were effectively protected from live SARS-CoV-2 virus challenge even at 18 weeks after the last vaccine dose. Importantly, we found that the antisera raised against the RBD of a single SARS-CoV-2 prototype strain could effectively neutralize the two predominant circulating variants B.1.1.7 and B.1.351, implying broad-spectrum protective potential of the RBD-based vaccines. Our data demonstrate that yeast-derived RBD-based recombinant SARS-CoV-2 vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of SARS-CoV-2 vaccines to achieve global immunization.

16.
MAbs ; 13(1): 1953683, 2021.
Article En | MEDLINE | ID: mdl-34313527

The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread social and economic disruption. Effective interventions are urgently needed for the prevention and treatment of COVID-19. Neutralizing monoclonal antibodies (mAbs) have demonstrated their prophylactic and therapeutic efficacy against SARS-CoV-2, and several have been granted authorization for emergency use. Here, we discover and characterize a fully human cross-reactive mAb, MW06, which binds to both SARS-CoV-2 and SARS-CoV spike receptor-binding domain (RBD) and disrupts their interaction with angiotensin-converting enzyme 2 (ACE2) receptors. Potential neutralization activity of MW06 was observed against both SARS-CoV-2 and SARS-CoV in different assays. The complex structure determination and epitope alignment of SARS-CoV-2 RBD/MW06 revealed that the epitope recognized by MW06 is highly conserved among SARS-related coronavirus strains, indicating the potential broad neutralization activity of MW06. In in vitro assays, no antibody-dependent enhancement (ADE) of SARS-CoV-2 infection was observed for MW06. In addition, MW06 recognizes a different epitope from MW05, which shows high neutralization activity and has been in a Phase 2 clinical trial, supporting the development of the cocktail of MW05 and MW06 to prevent against future escaping variants. MW06 alone and the cocktail show good effects in preventing escape mutations, including a series of variants of concern, B.1.1.7, P.1, B.1.351, and B.1.617.1. These findings suggest that MW06 recognizes a conserved epitope on SARS-CoV-2, which provides insights for the development of a universal antibody-based therapy against SARS-related coronavirus and emerging variant strains, and may be an effective anti-SARS-CoV-2 agent.


Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Amino Acid Sequence , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antibody-Dependent Enhancement , COVID-19/therapy , Conserved Sequence , Cross Reactions , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Models, Molecular , Neutralization Tests , Pandemics , Protein Domains , Protein Interaction Domains and Motifs , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug Treatment
17.
Emerg Microbes Infect ; 10(1): 1555-1573, 2021 Dec.
Article En | MEDLINE | ID: mdl-34304724

To curb the pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), multiple platforms have been employed toward a safe and highly effective vaccine. Here, we develop a novel cell-based vaccine candidate, namely K562-S, by utilizing human cell K562 as a cellular carrier to display Spike (S) protein of SARS-CoV-2 on the membrane. Analogous to the traditional inactivated vaccine, K562-S cells can be propagated to a large scale by culturing and completely lose their viability after exposure to X-ray irradiation or formalin. We in turn demonstrated high immunogenicity of formalin-inactivated K562-S vaccine in both mouse and non-human primates and its protective efficacy in mice. In mice, immunization with inactivated K562-S vaccines can elicit potent neutralizing antibody (nAb) responses persisting longer than 5 months. We consequently showed in a hACE2 mouse model of SARS-CoV-2 infection that a two-shot vaccination with adjuvanted K562-S rendered greater than 3 log reduction in viral lung load and concomitant ameliorated lung pathology. Of importance, the administration of the same regimen in non-human primates was able to induce a neutralizing antibody titer averaging three-fold higher relative to human convalescent serum. These results together support the promise of K562-based, S-protein-expressing vaccines as a novel vaccination approach against SARS-CoV-2. Importantly, with a powerful capacity to carry external genes for cell-based vectors, this platform could rapidly generate two- and multiple-valent vaccines by incorporating SARS-CoV-2 mutants, SARS-CoV, or MERS-CoV.


Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Animals, Genetically Modified , COVID-19 Vaccines/administration & dosage , Female , HEK293 Cells , Humans , K562 Cells , Macaca mulatta , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Primates , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
20.
Antiviral Res ; 190: 105076, 2021 06.
Article En | MEDLINE | ID: mdl-33865876

Chronic infection of hepatitis B virus (HBV) is a high risk factor for hepatic diseases, such as liver fibrosis, cirrhosis and hepatocellular carcinoma. Non-responders and hyporesponders to HBV vaccine are not protected from HBV infection. Patients that achieve autonomous or treatment-induced recovery are at risk of reactivation due to persistence of HBV covalently closed circular DNA (cccDNA) in hepatocytes. Interleukin 21 (IL-21) is a key regulator of HBV clearance in mouse models of HBV persistence: IL-21-based therapies effectively induces HBV clearance and protects mice from subsequent re-challenge. In this study, we explore the possibility of using IL-21 as prophylaxis against HBV by using mouse models of HBV persistence. HBV-naïve mice were transiently exposed to exogenous IL-21 through injection with recombinant adeno-associated virus expressing mouse IL-21 (AAV-IL-21). After extraneous IL-21 protein and DNA had become undetectable, mice were challenged with persistence-inducing HBV replicon plasmid through hydrodynamic injection. Viral persistence was analyzed by measuring viral antigens and DNA markers in serum and intrahepatic HBV DNA. For mechanistic studies, CD8+ T cell functions were blocked by repeated intraperitoneal injections of CD8 monoclonal antibodies in HBV-challenged mice. AAV-IL-21-injected mice quickly cleared HBV after HBV replicon challenge. In contrast, untreated mice and mice injected with control virus (AAV-Ctrl) allowed establishment of HBV persistence. Mechanistically, mice with prior IL-21 exposure displayed marked intrahepatic CD8+ T cell infiltrations, and CD8 blocking experiments demonstrated that CD8+ T cell responses functionally contributed toward clearance.


Dependovirus/genetics , Genetic Vectors , Hepatitis B virus/immunology , Hepatitis B/immunology , Hepatitis B/prevention & control , Interleukins/administration & dosage , Interleukins/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , DNA, Circular , Disease Models, Animal , Hepatocytes/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Persistent Infection/immunology , Persistent Infection/prevention & control , Persistent Infection/virology , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Virus Replication/immunology
...